当前位置:首页教职员工全职教师
全部 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
讲座教授

刘崇炫

0755-88018067

个人主页

  • 简历
  • 科研
  • 教学
  • 发表论著

刘崇炫,美国约翰霍普金斯大学环境工程博士学位。现任南方科技大学讲座教授,中组部“千人计划”国家特聘专家。仍任美国能源部西北太平洋国家实验室首席科学家。长期从事污染物在环境中的迁移、转化和降解研究,擅长运用理论、实验和模拟相结合的方法研究污染物在环境中的迁移转化规律和设计开发水处理和污染修复技术。在发展微生物动力学模型以描述物质和能量的代谢耦合过程,开发多尺度流体流动和溶质迁移模型,以及开发污水处理和土壤污染的微生物修复技术和从污水中捕获去除重金属和放射性核素多孔纳米材料等方面取得了多项创新成果。已主持和参加20余项美国和中国政府资助的科研项目。总资助额超过1亿美元,直接资助额达1700多万美元。发表SCI论文130多篇,其中在环境领域重要期刊《Environmental Science & Technology》发表论文34篇,在环境地球化学领域重要期刊《Geochimica et Cosmochimica Acta》发表论文31篇,在水资源领域重要期刊《Water Resources Research》发表论文13篇。被SCI期刊引用3,500多次,H因子37(Google Scholar引用4,800多次, H因子43)。并多次在美国地球物理协会(AGU)年会、美国化学学会(ACS)年会、Goldschmidt和美国能源部等地球科学领域及环境科学与工程领域重要国际会议上主持或做特邀报告。在2004年获得能源部基础能源科学研究杰出贡献奖,2011入选美国地质学学会(GSA)会士 (Fellow)。2014年入选中组部第十批“千人计划” 创新人才长期项目。

目前任职:

南方科技大学环境科学与工程学院,讲座教授

教育背景:

1994-1998:博士 (环境工程),美国约翰霍普金斯大学

1992-1994:硕士(水化学),美国阿拉巴马大学

1982-1984:硕士(水文地球化学),浙江大学

1978-1982:学士 (地质学),浙江大学

工作经历:

2016-至今:南方科技大学环境科学与工程学院, 讲座教授

2015-至今:兼职美国西北太平洋国家实验室, 首席科学家

2015: 中国地质大学(武汉),教授

2006-2015:美国西北太平洋国家实验室,首席科学家

2003-2006:美国西北太平洋国家实验室,资深研究员

2000-2003:美国西北太平洋国家实验室,研究员

1998-2000:美国西北太平洋国家实验室,博士后

获奖情况及荣誉:

2011:美国地质学会 Fellow

2004:美国能源部基础能源课题研究杰出贡献奖

研究领域:

 

1) 碳氮和污染物在地下水和地表水交互带中的水文生物地球化学过程

2) 污染物在土壤和沉积物中的多尺度行为和理论

3) 微生物群落结构功能和水文生物地球化学过程的协同演化

4) 微生物的降解和固定技术

5) 环境材料

简要介绍:

1) 碳氮和污染物在地下水和地表水交互带的水文生物地球化学过程

  地下水与地表水交互带是流域生态系统的一个重要组成部分, 是化学物质在陆地和水体之间迁移转化的关键地带,也是地表和地下两个水体中生物群落之间的关键过渡带。交互带的水文和生物地球化学过程不但受生态环境和气候变化的影响,也受到人类活动(如灌溉、施肥、污水排放等)的直接或间接作用。如何描述和刻画地下水与地表水交互带中化学和生物地球化学过程,以及污染物的迁移转化是尚未解决的问题。在中国基金委群体(41521001)和面上基金(41572228)等项目支持下,本团队正在研究碳氮循环和As、Cr和氮等污染物在地下水和地表水交互带中的水文生物地球化学过程。

2)污染物在土壤和沉积物中的多尺度行为、机理和模拟

  吸附/解吸、沉降/溶解,以及氧化/还原等土壤/水/污染物相互作用是控制金属和放射性核素的生物利用及其毒性的主要过程,这些作用还影响了污染物的扩散、迁移和持久性,以及影响污染修复技术所采用的方法、成本和效率。如何在天然和修复条件下,特别在复杂和非均质土壤和沉积物中精确预测土壤/水/污染物相互作用是当今环境科学和技术的一大重要难题。多年来刘崇炫教授团队在美国能源部多项环境修复科学和技术项目支持下,针对这一课题开展了深入和系统的研究:揭示出土壤/水/污染物相互作用的速率和程度随着时空尺度的增加呈现非线性的下降或上升,这种下降或上升随着土壤和沉积物的非均质性变化而变化的规律,建立了非均质和多尺度对地球化学和生物地球化学反应动力学影响的系统理论,开发了一系列数学模型来刻画金属和放射性核素在土壤和沉积物中的多尺度行为,并提出了具体的实验和理论相结合的方法去应用这些数学模型来预测土壤/水/污染物的多尺度相互作用。相关的研究工作在继续中。

3)微生物群落结构功能和水文生物地球化学过程的协同演化

  在表生地质环境中,地下水化学成分的演化和微生物群落的结构和功能密不可分。微生物从地下环境中获取生存所需的养分和能量,促进微生物群落结构和功能的改变,同时也直接或间接造成地下水化学成分的变化和影响污染物迁移转化的途径。本研究团队侧重研究地下水生物地球化学过程和微生物群落结构功能间的协同演化。应用新一代测序技术,代谢组学和蛋白组学研究微生物群落的结构和功能、时空分布,结合现代色质谱分析仪器、微观成像和大数据处理技术研究微生物群落和功能和其环境间的相互作用关系,构建基于微生物群落功能的新一代生物地球化学反应动力学模型,为解决生态环境问题和开发经济有效的污染地下水生物修复技术提供理论支撑。

4)微生物的降解和固定技术

  利用微生物进行原位降解或固定金属、放射性核素和有机污染物是当前经济有效的污染修复技术之一。设计并实施该修复技术的一大关键在于:构建生物地球化学动力学模型以有效预测微生物生长速率和程度、碳源和能量利用效率,以及微生物呼吸作用中对污染物的降解或固化速率和稳定性。本团队在多项美国能源部地下水污染修复科学和技术项目的支持下,在这一领域进行了长期深入研究,建立了多种微生物的生物地球化学动力学的模型,这些模型被广泛用于以微生物为主导的修复技术方面的理论和实践研究。

5)环境材料

  在环境应用领域,纳米技术已经受到越来越多的关注,例如用于捕获并去除土壤,沉积物和地下水中的重金属和放射性核素。然而,在地下环境中应用纳米技术面临着一个重要挑战,即纳米材料的稳定性、保留时间、及其与污染物的相互作用程度。本团队在美国能源部、环保部和基金委的联合支持下正在开发各种环境材料。已经研发出一种新型纳米多孔材料,该材料具有极大的活性表面积 (ca 1000 m2/g),能够有效的从废水和污染的地下水中捕获重金属和放射性核素。在此基础上,还发展了一项原位监测技术可以示踪地下环境中这种纳米多孔材料的迁移行为。

讲授的本科生及研究生课程:

 

(1) Physical and chemical processes for environmental engineering

(2) Mass transfer and diffusion

(3) Environmental biotechnology

(4) Aquatic chemistry

SCI论文(*为通讯作者;Web of Science 总引用数3500, H-index 37):

 

[135] Li M, Y Gao, W-J Qian, L Shi, Y Liu, W Nelson, CD Nicora, CT. Resch, C Thompson, S Yan, J Fredrickson, J Zachara, and C Liu*, 2016, Quantification of Functional Enzyme Dynamics and Its Linkage with Biogeochemical Process Kinetics, Proceedings of National Academy of Science  (submitted)

[134]  Smith AP, B Bond-Lamberty, BW. Benscoter, M Tfaily, CR Hinkle, C Liu, and VL Bailey, 2016, Precipitation versus groundwater: rewetting source affects soil carbon loss after drought, Nature Communication  (submitted)

[133] Yan Z, Liu C*, Liu Y, Bailey V, 2016, Pore-scale investigation on the response of heterotrophic respiration to moisture in heterogeneous soils, Biogeochemistry  (submitted)

[132]  Weng H, M Su, X Ma, G Wang, Z Dai, D Li, L Tian, C Liu*, 2016, Sludge drying using flue gas and its environmental effect, Environ. Sci. Technol.  (submitted)

[131] Xu F, Y Liu, M Bowen, A Plymale, D Kennedy, JM Zachara, C Liu*,, 2016, Chromium Redox Transformation and Reductive immobilization of Cr in Columbia River Hyporheic sediments from Hanford Site, Environ. Sci. Technol.  (submitted)

[130] Bond-Lamberty B, H Bolton, S Fansler, C Liu, J Smith, and V Bailey, 2016, Soil respiration and bacterial structure and function after 17 years of a reciprocal soil transplant experiment, PLOS One, 11(3): e0150599. doi:10.1371/journal.pone.0150599 

[129] Zachara, J., Brantley, S., Chorover, J., Ewing, R.P., Kerisit, S., Liu, C. Perfect, E., Rother, G, and Stack, A. 2016. Internal domains of natural porous media revealed: Critical locations for transport, storage, and chemical reaction. Environ. Sci. Technol., 50, 2811-2829 

[128]  Zhang X, C Liu*, BX Hu, Q Hu, 2016, Statistical analysis of additivity models for scaling reaction rates: An example of multi-rate U(VI) surface complexation in sediments, Mathematical Geosciences, 48, 511–535 

[127] Zhu W, M Shi, D Yu, C Liu, T Huang, and F Wu, 2016, Characteristics and kinetic analysis of AQS transformation and microbial goethite reduction: Insight into “redox mediate-microbe-iron oxide” interaction process, Scientific Report, 6, 23718, doi:10.1038/srep23718

[126] Xie X, P Fu, C Liu, J Li, Y Zhu, C Su, T Ma, and Y Wang, 2016, In situ remediation by aquifer iron coating: Field trial in the Datong basin, China, Journal of Hazardous Materials, 302, 19-26

[125] Yan S. Y Liu, C Liu*, L Shi, J Shang, H Shan, J Zachara, J Fredrickson, D Kennedy, C Resch, C Thompson, and S Fansler, 2016, Nitrate bioreduction in redox-variable low permeability sediments, Science of Total Environment, 539, 185-195

[124] Song H-S and C Liu, 2015, Modeling biological denitrification process: the Cybernetic approach, Ind. Eng. Chem. Res., 54, pp 10221–10227

[123] Liu Y, C Liu*, RK Kukkadapu, JP McKinley, JM Zachara, AE Plymale, MD Miller, TV, CT Resch, 2015, 99Tc(VII) Migration, Reduction, and Redox Rate Scaling in Naturally Reduced Sediments, Environ. Sci. Technol., 49, 13403-13412

[122] Liu C, Y. Liu, S Kerisit, JM Zachara, 2015, Pore-scale process coupling and effective surface reaction rate, Reviews in Mineralogy and Geochemistry, 80, 191-216

[121] Munusamy P, C Wang, MH Engelhard, DR Baer, JN Smith, C Liu, VK Kodali, BD Thrall, S Chen, AE Porter, MP Ryan and, 2015, Comparison of 20nm silver nanoparticles synthesized with and without a gold core: structure, dissolution in cell culture media, and biological impact on macrophages, Biointerphases, 10, 031003-1 to 031003-6

[120] Liu Y, C Liu*, C Zhang, X Yang, and JM Zachara, 2015,  Pore- and continuum-scale study of the effect of subgrid transport heterogeneity on redox reaction rates, Geochim. Cosmochim. Acta, 163, 140-155

[119] Fang Y, C. Liu, and L. R. Leung, 2015, Accelerating the spin-up of the coupled carbon and nitrogen cycle model in CLM4, Geosci. Model Dev. 8, 781-789

[118]  Xie, X., Wang, Y., Fu P., Liu, C., Li, J., Liu, Y., Wang, Z., Duan, M.,Mapoma, H., 2015, In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental Study, Science of the Total Environment, 527, 38-46 

[117] Weng H, Z Dai, Z Ji, C Gao, and C Liu*.  2015.  Release and control of hydrogen sulfide during sludge drying. Journal of Hazardous Materials, 296, 61-67

[116] Fluorescence-based method for rapid and direct determination of aqueous PBDEs.  Journal of Analytical Methods in Chemistry 2015:853085.  doi: http://dx.doi.org/10.1155/2015/853085

[115] Yang X, C Liu*, R Hinkle, H-Y Li, V Bailey, and B Bond-Lamberty, 2015, Simulations of ecosystem hydrological processes using a unified multi-scale model, Ecological modeling, 296:93-101.  doi:10.1016/j.ecolmodel.2014.10.032

[114] Fang Y, C Liu, M Huang, H Li, R Leung, 2014, Steady state estimation of soil organic carbon using satellite-derived canopy leaf area index, J. Adv Modeling Earth Systems, 6, 1049-1064 

[113] Xie X, Y Wang, A Ellis, C Liu, M Duan, and J Li.  2014.  "Impact of sedimentary provenance and weathering on arsenic distribution in aquifers of the Datong basin, China: Constraints from elemental geochemistry."  Journal of Hydrology 519(2014):3541-3549 

[112]  Yan S, Y Chen, W Xiang, Z Bao, C Liu, and B Deng, 2014, Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: the role of Fe(II) and Fe(III), Chemosphere, 117, 625–630

[111]  Wang Z, JM Zachara, J Shang, C Jeon, J Liu, and C Liu, 2014, Investigation of U(VI) adsorption in quartz-chlorite mineral mixtures, Environ. Sci. Technol., 48, 7766-7773, DOI: 10.1021/es500537g

[110] Kerisit SN and C Liu, 2014, Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at alumino-silicate surfaces, Environ. Sci. Technol., 48, 3899-3907 

[109] Wang D, C Su, C Liu, B Gao, Y Wang, X Hao, D Zhou, and 2014, Transport of fluorescently labeled hydroxyapatite nanoparticles in saturated granular media at environmentally relevant concentrations of surfactants, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 58-66

[108] Ma R, C Zheng, C Liu, J Greskowiak, H Prommer, and J M Zachara, 2014, Assessment of Controlling Processes for Field-Scale Uranium Reactive Transport under Highly Transient Flow Conditions, Water Resour. Res., 50, doi:10.1002/2013WR013835

[107] Yang X, C Liu, J Shang, Y Fang, and V Bailey, 2014, A Unified Multi-Scale Model for Pore-Scale Flow Simulations in Soils, Soil Soc. Sci. Am. J., 78, 108-118, DOI10.2136/sssaj2013.05.0190

[106]  Liu C, J Shang, H Shan, JM Zachara, 2014, Effect of subgrid heterogeneity on scaling geochemical and biogeochemical reaction rates, a case study of U(VI) desorption, Environ. Sci. Technol., 48, 1745-1752. DOI10.2136/sssaj2013.05.0190 

[105] Shang J, C Liu*, Z Wang, and J Zachara, 2014, Long-term kinetics of U(VI) desorption from Sediments, Water Resour. Res., doi:10.1002/2013WR013949 

[104] Weng H-X, X-W Ma, F-X Fu, J-J Zhang, Z Liu, L-X Tian, C Liu*, 2014, Transformation of heavy metal speciation during sludge drying: mechanistic insights, J. Hazard. Mater. 265, 96-103 

[103] Zhang X, Liu C*, Hu B X, Zhang G, 2014, Uncertainty analysis of multi-rate kinetics of Uranyl desorption from sediment, J. Contam. Hydrol., 156, 1-15

[102] Ma, R, C Liu, J Greskowiak, H Prommer, C Zheng and JM Zachara. 2014. Influence of Calcite on Uranium(VI) Reactive Transport in the Groundwater-River Mixing Zone. J. Contam. Hydrol., 156, 27-37

[101] Zachara, J M; I S Eugene, C Liu, 2013, Reactive Transport of the Uranyl Ion in Soils, Sediments, and Groundwater Systems, Canadian Mineralogical Society, Special Issue: Uranium: Cradle to Grave, 43, 255-300 

[100] Fang Y, M Huang, C Liu, H Li, LR Leung, 2013, A Generic Biogeochemical Module for Earth System Models, Geosci. Model Dev., 6, 1979-1988 

[99] Kerisit S and C Liu, 2013, Structure, Kinetics, and Thermodynamics of the Aqueous Uranyl(VI) cation, J. Phy. Chem., 117, 6421-6432 

[98] Liu J, C I Pearce, C Liu, Z Wang, L Shi, E Arenholz, and K M Rosso, 2013, Titanomagnetite (Fe3-xTixO4) Nanoparticles as Tunable Probes of Microbial Metal Oxidation, J. Am. Chem. Soc., 24, 8896-8907 

[97]  Zhang C, Liu C*, Shi Z., 2013, Micromodel Investigation of Transport Effect on the Kinetics of Reductive Dissolution of Hematite, Environ. Sc. Technol., 47, 4137-4139 

[96] Zachara JM, PE Long, J Bargar, JA Davis, PM Fox, JK Fredrickson, MD Freshley, A Konopka, C Liu, JP McKinley, ML Rockhold, KH Williams, and S Yabusaki, 2013, "Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater-river interaction zone."  J. Contam. Hydro., 147, 45-72 

[95] Ma R, C Zheng, and C Liu.  2013, Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment, in Encyclopedia of Sustainability Science and Technology, ed. Robert A Meyers, pp. 4774-4784, Springer, New York

[94] Stoliker DL, C Liu, DB Kent, and JM Zachara.  2013.  Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments, Water Resour. Res., 49, 1163-1177

[93] Liu C, J Shang, SN Kerisit, and JM Zachara.  2013.  Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments. Geochim. Cosmochim. Acta, 105, 326-341 

[92] Shang J, C Liu, and Z Wang, 2013.  Transport and retention of engineered nanoporous particles in porous media: Effects of concentration and flow dynamics, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 417, 89-98

[91] Kerisit S and C Liu, 2012. Diffusion and adsorption of uranyl carbonate species in nanosized mineral fractures”, Environ. Sci. Technol. 46, 1632-1640

[90] Li J, K Zhu, J Shang, D Wang, Z Nie, R Guo, C Liu, Z Wang, X Li, and J Liu.  2012.  "Fluorescent functionalized mesoporous silica for radioactive material extraction, Separation Science and Technology, 47 1507-1513

[89] Liu J, Z Wang, SM Belchik, M Edwards, C Liu, DW Kennedy, ED Merkley, MS Lipton, JN Butt, D Richardson, JM Zachara, JK Fredrickson, KM Rosso, and L Shi.  2012.  "Identification and Characterization of MtoA: a Decaheme c-Type Cytochrome of the Neutrophilic Fe(II)-oxidizing Bacterium Sideroxydans lithotrophicus ES1." Frontiers in Microbiological Chemistry : Article No.37.  doi:10.3389/fmicb.2012.00037

[88] Liu C, and Y Fang.  2012.  Kinetic Modeling of Microbiological Processes.  Journal of Microbiology and Biotechnology 3(5):1000e109.  doi:10.4172/2157-7463.1000e109

[87]  Ewing, RP, C Liu, and Q Hu, 2012, Modeling intragranular diffusion in low-connectivity granular media. Water Resour. Res. 47, W03518. Doi:10.1029/2011WR011407 

[86] Sheng P, Hu Q, Ewing R, Liu C, and Zachara, JM., 2012, Quantitative 3-D Elemental Mapping by LA-ICP-MS of Basalt from the Hanford 300 Area, Environ. Sci. Technol., 46, 2025-2032

[85] Bishop ME; H. Dong RK Kukkadapu; C Liu; RE Edelmann, 2011, Microbial reduction of Fe(III) in multiple clay minerals by Shewanella putrefaciens and reactivity of bioreduced clay minerals toward Tc(VII) immobilization, Geochim. Cosmochim Acta, 75, 5229-5246 

[84] Wang Z, JM Zachara, J-F Boily, Y Xia, TC Resch, DA Moore, C Liu, 2011, Determining individual mineral contributions to U(VI) adsorption in a contaminated aquifer sediment: A fluorescence spectroscopy study, Geochim. Cosmochim. Acta , 75, 2965-2979 

[83] Shang, J, C Liu, and J.M. Zachara. 2011. Effect of grain size on U(VI) surface complexation kinetics and adsorption additivity. Environ. Sci. Technol. 45, 6025-6031

[82] Liu, C, J Shang, and J. M. Zachara. 2011. Multi-species diffusion models: A study of uranyl species diffusion. Water Resour. Res. 47, W12514, doi:10.1029/2011WR010575

[81] Greskowiak, J., M. B. Hay, H. Prommer, C Liu, V. E. Post, R. Ma, J. A. Davis, C. Zheng, and J. M. Zachara. 2011. Simulating adsorption of U(VI) under transient groundwater flow and hydrochemistry – Physical versus non-equilibrium model.  Water Resour. Res. 47 W08501, doi:10.1029/2010WR010118 

[80] Ma R, C Zheng, H Prommer, J Greskowiak, C Liu, JM Zachara, and ML Rockhold, 2010, A field-scale reactive transport model for U(VI) migration influenced by coupled multi-rate mass transfer and surface complexation reactions, Water Resour. Res. 46, W05509, doi:10.1029/2009WR008168 

[79] Istok JD, M Park, M Michalsen, AM Spain, LR Krumholz, C Liu, J McKinley, P Long, E Roden, A D Peacock, B Baldwin, 2010, A thermodynamically-based model for predicting microbial growth and community composition coupled to system geochemistry, J. Contam. Hydrol., 112, 1-14 

[78] Greskowiak J, H Prommer, C Liu, V Post, R Ma, C Zheng, and JM Zachara.  2010.  "Comparison of parameter sensitivities between a laboratory and field scale model of uranium transport in a dual domain, distributed-rate reactive system, Water Resour. Res. 46:W09509, doi:1029/2009WR008781

[77] Shang J, C Liu*, Z Wang, H Wu, K Zhu, J Li, and J Liu, 2010, In-situ measurements of engineered nanoporous particle transport in saturated porous media, Environ. Sci. Technol., 44, 8190-8195 

[76] Kerisit S and C Liu, 2010, Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution, Geochim. Cosmochim. Acta, 74, 4937-4952 

[75] Um W, JM Zachara, C Liu, DA Moore, and KA Rod.  2010.  Resupply Mechanism to a Contaminated Aquifer: A Laboratory Study of U(VI) Desorption from Capillary Fringe Sediments, Geochim. Cosmochim. Acta, 74, 5155-5170

[74] Um W, JM Zachara, C Liu, 2010, U(VI) Desorption from Capillary Fringe Sediments, Geochim. Cosmochim. Acta, 74, 1065

[73] Ewing R, Q Hu, and C Liu, 2010, Scale dependence of intra-granular porosity, diffusivity, and tortuosity, Water Resour. Res., 46, W06513, doi:10.1029/2009WR008183 

[72] Liu C, L Zhong, JM Zachara, 2010, Uranium(VI) diffusion in low-permeability subsurface materials., Radiochimica Acta, 98, 719-726

[71] Peretyazhko, T., Zachara, J. M., Kukkadapu, R. K. Liu C., 2010, Reactions of Tc with Fe(II) and O-2 in Hanford redox-sensitive sediments, Geochim. Cosmochim. Acta,74, 807

[70] Yan S, B Hua, Z Bao, J Yang, C Liu and B Deng, 2010, Uranium(VI) removal by nanoscale zerovalent iron in anoxic batch systems, Environ. Sci. Technol., 44, 7783-7789

[69] Shi Z, C Liu, JM Zachara, Z Wang, and B Deng, 2009, Inhibition effect of secondary phosphate mineral precipitation on uranium release from contaminated sediments, Environ. Sci. Tchnol., 43(21):8344-8349 

[68] Liu C, Z Shi, and JM Zachara, 2009, Kinetics of uranium(VI) desorption from contaminated sediments: Effect of geochemical conditions and model evaluation, Environ. Sci. Technol . 43, 6560-6566 

[67] Liu C, JM Zachara, L Zhong, SM Heald, Z Wang, B-H Jeon, JK Fredrickson, 2009, Microbial reduction of intragrain U(VI) in contaminated sediment, Environ. Sci. Technol. 43, 4928-4933 

[66] Kerisit SN, and C Liu, 2009, Molecular simulations of water and ion diffusion in nano-sized mineral fractures, Environ. Sci. Technol., 43, 777-782 

[65] Fredrickson JK, JM Zachara, AE Plymale, SM Heald, JP McKinley, DW Kennedy, C Liu, Nachimuthu P, 2009, Oxidative dissolution potential of biogenic and a biogenic TcO2 in subsurface sediments Geochim. Cosmochim. Acta, 73, 2299-2313 

[64] Qafoku N, PE Dresel, JP McKinley, C Liu, SM Heald, CC Ainsworth, JL Phillips, and JS Fruchter.  2009.  "Pathways of aqueous Cr(VI) attenuation in a slightly alkaline oxic subsurface, Environ. Sci. Technol. 43(4):1071-1077 

[63] Qafoku N, L Zhong, C Liu, BW Arey, AV Mitroshkov, RG Riley, 2009, Physical control on CCl4 and CHCl3 desorption from artificially contaminated and aged sediments with supercritical carbon dioxide, Chemosphere, 74, 494-500 

[62] Jaisi DP, H Dong, AE Plymale, JK Fredrickson, JM Zachara, and C Liu.  2009, Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite, Geochim. Cosmochim. Acta, 72, 5361-5371 

[61] Zachara JM, T Peretyazhko, C Liu, CT Resch, S Heald, R Kukkadapu, 2009, Nature and reactivity of ferrous iron forms through a subsurface redox transition zone probed by contact with the pertechnetate anion, Geochim. Cosmochim. Acta, 73, 1494

[60] Bai J, C Liu, WP Ball, 2009, Study of sorption-retarded U(VI) diffusion in Hanford site/clay material, Environ. Sci. Technol., 43, 7706-7711.

[59] Wang Z, KB Wagnon, CC Ainsworth, C Liu, KM Rosso, and JK Fredrickson,  2008, A Spectroscopic Study of the effect of Ligand Complexation on the Reduction of Uranium (VI) by AH2DS, Radiochim. Acta, 96, 599-605

[58] Wang Z, JM Zachara, C Liu, PL Gassman, AR Felmy, and SB Clark, 2008, A cryogenic fluorescence spectroscopic study of uranyl carbonate, phosphate and oxyhydroxide minerals, Radiochim. Acta, 96(9-11):591-598

[57] Wellman DM, JM Zachara, C Liu, N Qafoku, SC Smith, and SW Forrester.  2008, Advective Desorption of Uranium (VI) from Contaminated Hanford Vadose Zone Sediments under Saturated and Unsaturated Conditions, Vadose Zone J., 7, 1144-1159

[56] Ilton ES, N Qafoku, C Liu, D Moore, and JM Zachara, 2008, Advective removal of intraparticle uranium from contaminated vadose zone sediment, Hanford, USA, Environ. Sci. Technol., 42, 1565-1571

[55] Jaisi DP, C Liu, H Dong, RE Blake, and JB Fein.  2008, Fe(II) Sorption to Nontronite (NAu-2), Geochim. Cosmochim. Acta, 72(22):5361-5371

[54] Peretyazhko T, JM Zachara, SM Heald, RK Kukkadapu, C Liu, AE Plymale, and CT Resch, 2008, Reduction of Tc(VII) by Fe(II) sorbed on Al (hydr)oxides, Environ. Sci. Technol., 42, 5499-5506.

[53] Marshall MJ, AE Plymale, DW Kennedy, L Shi, Z Wang, SB Reed, AC Dohnalkova, CJ Simonson, C Liu, DA Saffarini, MF Romine, JM Zachara, AS Beliaev, and JK Fredrickson, 2008, Hydrogenase- and outer membrane c-type cytochrome-facilitated reduction of technetium(VII) by Shewanella oneidensis MR-1, Environ. Microbiol., 10, 125–136

[52] Wang Z, C Liu, X Wang, MJ Marshall, JM Zachara, KM Rosso, M Dupuis, JK Fredrickson, SM Heald, L Shi, 2008, Kinetics of reduction of Fe(III) complexes by outer membrane cytochromes MtrC and OmcA of Shewanella oneidensis MR-1, Appl. Environ. Microbiol. 74(21):6746-6755

[51] Kerisit SN, C Liu, and ES Ilton, 2008, Molecular dynamics simulations of the orthoclase (001)- and (010)-water interfaces, Geochim. Cosmochim. Acta,72, 1481-1497.

[50] Peretyazhko T, JM Zachara, SM Heald, B Jeon, RK Kukkadapu, C Liu, DA Moore, and CT Resch, 2008, Heterogeneous reduction of Tc(VII) by Fe(II) at the solid-water interface, Geochim. Cosmochim. Acta, 72, 1521-1539

[49] Liu C, JM Zachara, N Qafoku, and Z Wang, 2008, Scale-dependent desorption of uranium from contaminated subsurface sediments, Water Resour. Res. 44, W08413, doi: 10.1029/2007WR006478

[48] Liu C, 2007, An ion diffusion model in semi-permeable clay materials, Environ. Sci. Technol., 41, 5403-5409.

[47] McKinley J P, JM Zachara, SC Smith, and C Liu.  2007, Cation exchange reactions controlling desorption of 90Sr2+ from coarse-grained contaminated sediments from the Hanford formation, Washington. Geochim. Cosmochim. Acta, 71, 305-325.

[46] Fang J. Z Gu, D Gand, C Liu, ES Ilton, and B Deng, 2007, Cr(VI) Removal from aqueous solution using a commercial activated carbon coated with quaternized poly(4-vinylpyrine), Environ. Sci. Technol., 41, 4748-4753.

[45] Jaisi DP, H Dong, and C Liu, 2007, Influence of biogenic Fe(II) on the rate and microbial reduction of Fe(III) in clay minerals Nontronite, Illite, and Chlorite. Geochim. Comochim. Acta, 71, 1145-1158.

[44]  Liu C, JM Zachara, B-H Jeon, Z Wang, A Dohnalkova, and JK Fredrickson, 2007, Influence of calcium on microbial reduction of solid phase U(VI), Biotechnol. Bioeng., 97, 1415-1422.

[43] Jaisi DP, H Dong, and C Liu, 2007, Kinetic analysis of microbial reduction of Fe(III) in Nontronite, Environ. Sci. Technol., 41, 2437-2444.

[42] Liu C, JM Zachara, NS Foster-Mills, J Strickland, 2007, Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate, Environ. Sci. Technol., 41 7730-7735.

[41] Zachara JM, B-H Jeon, SM Heald, RK Kukkadapu, C Liu, AC Dohnalkova, JP McKinley, and DA Moore,  2007, Reduction of pertechnetate [Tc(VII)] by aqueous Fe(II) and the nature of solid phase redox products, Geochim. Cosmochim. Acta, 71, 2137-2157.    

[40] Liu C, B-H Jeon, JM Zachara, Z Wang, A Dohnalkova, and JK Fredrickson, 2006, Kinetics of microbial reduction of solid phase U(VI), Environ. Sci. Technol., 40, 6290-6296. 

[39] McKinley JP, JM Zachara, C Liu, SM Heald, 2006, Microscale controls on the fate of contaminant uranium in the vadose zone, Hanford Site, Washington, Geochim. Cosmochim. Acta, 70, 1873-1887.

[38] Liu C, JM Zachara, W Yantasee, PD Majors, JP McKinley, 2006, Microscopic reactive diffusion of uranium in the contaminated sediments at Hanford, USA. Water Resour. Res., 42, W12420, doi:10.1029/2006WR005031.

[37] Ilton ES, SM Heald, SC Smith, D Elbert, and C Liu, 2006, Reduction of uranyl in the interlayer region of low iron micas under anoxic and aerobic conditions, Environ. Sci. Technol., 40, 5003-5009.

[36] Ilton ES, C Liu, W Yantasee, Z Wang, D Moore, and JM Zachara, 2006, The dissolution of synthetic Na-boltwoodite in sodium carbonate solutions, Geochim. Cosmochim. Acta, 70, 4836-4849.

[35]  Qafoku, NP; Zachara, JM; Liu, C, 2005, Uranium(VI) desorption from long-term contaminated sediments, Geochim. Cosmochim. Acta, 69, 470 

[34]  Wang Z, JM Zachara, PL Gassman, C Liu, O Qafoku, and JG Catalano.  2005. Fluorescence spectroscopy of U(VI)-silicates and U(VI)-contaminated Hanford sediment. Geochim. Cosmochim. Acta. 69, 1391-1403. 

[33]  Ainsworth CC, JM Zachara, KB Wagnon, SG McKinley, C Liu, SC Smith, HT Schaef, and PL Gassman, 2005, Impact of highly basic solutions on sorption of Cs+ to subsurface sediments from the Hanford Site, USA. Geochim. Cosmochim. Acta, 69, 4787-4800.

[32] Felmy, AR; Liu, C; Straatsma, TP, 2005, The importance of diffusion at the microbe-mineral interface: Electrical double layer effects and the impact on precipitation/dissolution, Geochim. Cosmochim. Acta 69 171 

[31] Dong W, WP Ball, C Liu, Z Wang, A T Stone, J Bai, and JM Zachara, 2005, Influence of calcite and dissolved calcium on U(VI) sorption to a Hanford subsurface sediment, Environ. Sci. Technol., 39, 7949-7955.

[30] Liu C, JM Zachara, L Zhong, RK Kukkadapu, JE Szecsody, and DW Kennedy,  2005, Influence of sediment bioreduction and reoxidation on uranium sorption."  Environ. Sci. Technol. 39, 4125-4133.

[29] Qafoku N, JM Zachara, C Liu, PL Gassman, O Qafoku, and SC Smith., 2005, Kinetic desorption and sorption of U(VI) during reactive transport in a contaminated Hanford sediment, Environ. Sci. Technol., 39, 3157-3165.

[28] Zachara JM, JP McKinley; C Liu, Z Wang, J Catalano, G Brown, N Qafoku, 2005, Molecular speciation, mineral residence, and geochemical behavior of U in contaminated subsurface sediments, Geochim. Cosmochim. Acta 69, 618

[27] Zhong L, C Liu, JM Zachara, DW Kennedy, JE Szecsody, and BD Wood, 2005, Oxidative dissolution of biogenic U(IV) precipitates: Effects of Fe(II) and pH. J. Environ. Qual., 34, 1763-1771.

[26] Liu C, JM Zachara, and SC Smith, 2004, A Cation Exchange Model to Describe Cs+ Sorption in High Ionic Strength in Subsurface Sediments at Hanford Site, USA, J. Contam. Hydrol., 68, 217-238.

[25] Liu C, JM Zachara, AR Felmy, and YA Gorby, 2004, An Electrodynamics-Based Model for Ion Diffusion in Microbial Polysaccharides, Colloids and Surfaces B: Biointerfaces, 38, 55-65.

[24] Wang Z, JM Zachara, W Yantasee, PL Gassman, C Liu, and AG Joly, 2004, Gryogenic Laser Induced Fluorescence Characterization of U(VI) in Hanford Vadose Zone Pore Waters, Environ. Sci. Technol., 38:5591-5597.

[23] Liu C*, JM Zachara, O Qafoku, JP McKinley, SM Heald, and Z Wang, 2004, Dissolution of uranyl microprecipitates from subsurface sediments at Hanford Site, USA, Geochim. Cosmochim. Acta, 68, 4519-4537.

[22] Fredrickson JK, JM Zachara, DW Kennedy, RK Kukkadapu, JP McKinley, SM Heald, C Liu, Plymale AE, 2004, Reduction of TcO4- by Sediment-Associated Biogenic Fe(II), Geochim. Cosmochim. Acta, 68, 3171-3187.

[21] Liu C, JM Zachara, SC Smith, JP McKinley, CC Ainsworth, 2003, Desorption Kinetics of Radiocesium from the Subsurface Sediments at Hanford Site, USA. Geochim. Cosmochim. Acta 67, 2893-2912.

[20] Liu C, JM Zachara, O Qafoku, and SC Smith, 2003, Effect of Temperature on Cs+ Sorption and Desorption in Subsurface Sediments at Hanford Site, USA, Environ. Sci. Technol. 37, 2640-2645.

[19] Fredrickson JK, S Kota, RK Kukkapadu, C Liu, and JM Zachara, 2003, Influence of Electron Donor/Acceptor Concentrations on Hydrous Ferric Oxide (HFO) Bioreduction, Biodegradation 14, 91-103

[18] Lin Y, C Liu, H Wu, HK Yak, and CM Wai, 2003, Supercritical Fluid Extraction of Toxic Heavy Metals and Uranium from Acidic Solutions with Sulfur-Containing Organophosphorus Reagents, Industrial Eng. Chem. Res. 42, 1400-1405.

[17] Liu C, and WP Ball, 2002, Back Diffusion of Chlorinated Contaminants from a Natural Aquitard to a Remediated Aquifer under Well-Controlled Conditions: Predictions and Measurements, Ground Water, 40, 175-184.

[16] Ball WP and C Liu, 2002: Diffusion-Limited Contamination and Decontamination in a Layered Aquitard: Forensic and Predictive Analysis of Field Data, in Resource Recovery, Confinement, and Remediation of Environmental Hazards, Ed.: John Chadam, Al Cunningham, Richard E. Ewing, Peter Ortoleva, and Mary Fanett Wheeler, 131, 179-194, Springer-Verlag New York, Inc.

[15] Fredrickson JK, JM Zachara, DW Keneddy, C Liu, MC Duff, DB Hunter, and A Dohnalkova, 2002, Influence of Mn Oxides on the Reduction of U(VI) by the Metal-Reducing Bacterium Shewanella putrefaciens,  Geochim. Cosmochim. Acta, 66, 3247-3262.

[14] Liu C, JM Zachara, JK Fredrickson, DW Kennedy, and A Dohnalkova, 2002, Modeling the Inhibition of the Bacterial Reduction of U(VI) by -MnO2(s), Environ. Sci. Technol. 36, 1452-1459.

[13] Liu C, YA Gorby, JM Zachara, JK Fredrickson, and CF Brown, 2002, Reduction Kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in Cultures of Dissimilatory Metal Reducing Bacteria, Biotechnol. Bioeng. 80: 637-649.

[12] Zachara JM, SC Smith, C Liu, JP McKinley, RJ Serne, and PL Gassman, 2002, Sorption of Cs+ to Micaceous Subsurface Sediment from the Hanford Site, USA, Geochim. Cosmochim. Acta, 66, 193-211.

[11] Kukkadapu RK, JM Zachara, SC Smith, JK Fredrickson, and C Liu,  2001.  Dissimilatory Bacterial Reduction of Al-Substituted Goethite in Subsurface Sediments, Geochim. Cosmochim. Acta 65, 2913-2924.

[10] Liu C, S Kota, JM Zachara, JK Fredrickson, and CK Brinkman, 2001, Kinetic Analysis of the Bacterial Reduction of Goethite, Environ. Sci. Technol. 35, 2482-2490.

[09] Liu C, JM Zachara, YA Gorby, JE Szecsody, and CF Brown, 2001, Microbial Reduction of Fe(III) and Sorption/Precipitation of Fe(II) on Shewanella putrefaciens, strain CN32, Environ. Sci. Technol. 35, 1385-1393.

[08] Liu C and JM Zachara, 2001, Uncertainties of Monod Parameters Nonlinearly Estimated from Batch Experiments, Environ. Sci. Technol. 35, 133-144.

[07] Liu C and WP Ball, 2000, Analytical modeling of diffusion-limited contamination and decontamination in a two-layer porous me, Adv. Water Res. 24, 225-226.

[06] Liu C, JE Szecsody, JM Zachara and WP Ball, 2000, Use of the Generalized Integral Transform Method to Solute Transport with Nonlinear Sorption and Nonlinear Reaction in Heterogeneous Porous Media, Adv. Water Res. 23, 483-492.

[05] Liu C and WP Ball, 1999, An application of Inverse Methods to Contaminant Source Identification from Contaminant Diffusion Profiles at Dover AFB, DE, Water Resour. Res. 35, 1975-1985.

[04] Liu C, WP Ball, and JH Ellis, 1998, An Analytical Solution to Advection-Dispersion Equation in Multi-Layer Porous Media, Transport in porous media 30, 25-43.

[03] Liu C and WP Ball, 1998, Analytical Modeling of Diffusion-Limited Contamination and Decontamination in a Two-Layer Porous Medium, Adv. Water Res. 21, 297-313.

[02] Donahoe RJ and C Liu, 1997, Porewater Geochemistry near the Sediment-Water Interface of a Zoned, Freshwater Wetland Located in the Southeastern United States, Environ. Geol. 33, 143-153.

[01] Ball WP, C Liu, G Xia, and D Young, 1997, A Diffusion-Based Interpretation of Tetrachloroethene and Trichloroethene Concentration Profiles in a Groundwater Aquitard, Water Resour. Res. 33, 2741-2758.